3 resultados para High throughput nucleotide sequencing

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA-binding and RNA-binding proteins are usually considered â˜undruggableâ partly due to the lack of an efficient method to identify inhibitors from existing small molecule repositories. Here we report a rapid and sensitive high-throughput screening approach to identify compounds targeting proteinânucleic acids interactions based on proteinâDNA or proteinâRNA interaction enzyme-linked immunosorbent assays (PDI-ELISA or PRI-ELISA). We validated the PDI-ELISA method using the mammalian highmobility- group protein AT-hook 2 (HMGA2) as the protein of interest and netropsin as the inhibitor of HMGA2âDNA interactions. With this method we successfully identified several inhibitors and an activator for HMGA2âDNA interactions from a collection of 29 DNA-binding compounds. Guided by this screening excise, we showed that netropsin, the specific inhibitor of HMGA2âDNA interactions, strongly inhibited the differentiation of the mouse pre-adipocyte 3T3-L1 cells into adipocytes, most likely through a mechanism by which the inhibition is through preventing the binding of HMGA2 to the target DNA sequences. This method should be broadly applicable to identify compounds or proteins modulating many DNA-binding or RNA-binding proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metagenomics is the culture-independent study of genetic material obtained directly from environmental samples. It has become a realistic approach to understanding microbial communities thanks to advances in high-throughput DNA sequencing technologies over the past decade. Current research has shown that different sites of the human body house varied bacterial communities. There is a strong correlation between an individualâs microbial community profile at a given site and disease. Metagenomics is being applied more often as a means of comparing microbial profiles in biomedical studies. The analysis of the data collected using metagenomics can be quite challenging and there exist a plethora of tools for interpreting the results. An automatic analytical workflow for metagenomic analyses has been implemented and tested using synthetic datasets of varying quality. It is able to accurately classify bacteria by taxa and correctly estimate the richness and diversity of each set. The workflow was then applied to the study of the airways microbiome in Chronic Obstructive Pulmonary Disease (COPD). COPD is a progressive lung disease resulting in narrowing of the airways and restricted airflow. Despite being the third leading cause of death in the United States, little is known about the differences in the lung microbial community profiles of healthy individuals and COPD patients. Bronchoalveolar lavage (BAL) samples were collected from COPD patients, active or ex-smokers, and never smokers and sequenced by 454 pyrosequencing. A total of 56 individuals were recruited for the study. Substantial colonization of the lungs was found in all subjects and differentially abundant genera in each group were identified. These discoveries are promising and may further our understanding of how the structure of the lung microbiome is modified as COPD progresses. It is also anticipated that the results will eventually lead to improved treatments for COPD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most reef-building corals are known to engage in non-pathogenic symbiosis not only with unicellular dinoflagellates from the genus Symbiodinium, but also with other microscopic organisms such as bacteria, fungi, and viruses. The functional details of these highly complex associations remain largely unclear. The impetus of this study is to gain a better understanding of the symbiotic interaction between marine bacteria and their coral host. Studies have shown that certain bacterial orders associate with specific certain coral species, thus making the symbiotic synergy a non-random consortium. Consequently both corals and bacteria may be capable of emitting chemical cues that enable both parties to find one another and thus generate the symbiosis. The production of these cues by the symbionts may be the result of environmental stimuli such as elevated ocean temperatures, increased water acidity, and even predation. One potential chemical cue could be the compound DMSP (Dimethylsulfoniopropionate) and its sulphur derivatives. Reef-building corals are believed to be the major producers of the DMSP during times of stress. Marine bacteria utilize DMSP as a source of sulfur and carbon. As a result corals could potentially attract their bacterial consortium depending on their DMSP production. This would enable them to adapt to fluctuating environmental conditions by changing their bacterial communities to that which may aid in survival. To test the hypothesis that coral-produced DMSP plays a role in attracting symbiotic bacteria, this study utilized the advent of high-throughput sequencing paired with chemotactic assays to determine the response of coral-associated bacterial isolates towards the DMSP compound at differing concentrations. Chemotaxis assays revealed that some isolates responded positively towards the DMSP compound. This finding adds to existing evidence suggesting that coral-associated pathogens utilize chemotaxis as a host colonization and detection mechanism. Thus the symbiotic bacteria that make up the coral microbiome may also employ this process. Furthermore this study demonstrates that bacterial motility may be a strong contributing factor in the response to the chemotactic cue. Swarming motility may be better suited for bacteria that need to respond to a chemical gradient on the surface of the coral. Therefore the isolates that were able to swarm seemed to respond more strongly to the DMSP.